On the capacity for almost disjunctive codes.
 D'yachkov A.G., Vorobyev I.V., Polyanskii N.A., Shchukin V.Yu.

Vorobyev I.V.
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

ACCT 2014

Basic Notations

Let \triangleq denote equality by definition, $|A|$ be the cardinality of a set A, $[n] \triangleq 1,2, \ldots, n$ be the set of positive integers from 1 to n.

A binary matrix $X \triangleq\left\|x_{i}(j)\right\|, \quad i \in[N], \quad j \in[t]$, is called a code with t codewords(columns) $\boldsymbol{x}(1), \boldsymbol{x}(2), \ldots, \boldsymbol{x}(t)$ of length N.

We say that a binary vector \boldsymbol{x} covers binary vector $\boldsymbol{y}(\boldsymbol{x} \succeq \boldsymbol{y})$ if $x_{i} \geq y_{i}$ for any $i \in[N]$.

Definition 1.

An s-subset of columns $x(\mathcal{S}),|\mathcal{S}|=s$, of a code X is said to be an s-bad subset of columns in the code X if there exists an another column \boldsymbol{y}, such that the disjunctive sum

$$
\bigvee_{i \in \mathcal{S}} x(i) \succeq y
$$

Otherwise, the s-subset $\boldsymbol{x}(\mathcal{S})$ is called s-good subset of columns in the code X.
Example: $s=2$.

$x(1)$	$x(2)$	$x(3)$	$x(4)$	$x(5)$
1	1	0	0	1
0	0	1	0	1
1	0	1	1	0
0	1	0	1	0

Set $\{\boldsymbol{x}(3), \boldsymbol{x}(4)\}$ is good. Set $\{\boldsymbol{x}(2), \boldsymbol{x}(3)\}$ is bad.

Definition 2.

A code X is said to be a disjunctive (s, ε)-code, if the number of all s-good subsets of columns of the code X is at least $(1-\varepsilon) \cdot\binom{t}{s}$.

Example: In case $\varepsilon=0$, we obtain s-disjunctive code.

Definition 3.

Let $t_{\varepsilon}(N, s)$ be the maximal size of (s, ε)-codes of length N and let $N_{\varepsilon}(t, s)$ be the minimal length of (s, ε)-codes of size t. If $\varepsilon=0$, then the number

$$
R(s) \triangleq \varlimsup_{N \rightarrow \infty} \frac{\log _{2} t_{0}(N, s)}{N}=\varlimsup_{t \rightarrow \infty} \frac{\log _{2} t}{N_{0}(t, s)}
$$

is called the rate of s-codes.

Define the number

$$
C(s) \triangleq \varlimsup_{\varepsilon \rightarrow 0} \varlimsup_{N \rightarrow \infty} \frac{\log _{2} t_{\varepsilon}(N, s)}{N}=\varlimsup_{\varepsilon \rightarrow 0} \varlimsup_{t \rightarrow \infty} \frac{\log _{2} t}{N_{\varepsilon}(t, s)}
$$

called the capacity of almost disjunctive s-codes.

Combinatorial Group Testing

Problem: identify all defective elements among t items.
Assumption: at most s defectives.
Solution: use disjunctive codes.

defegives				$\left.\begin{array}{\|l\|l\|}\hline 1 & 1\end{array}\right)$
0	0	1		
0	0	1	0	1
1	0	1	1	0
0	1	0	1	0

Outcome covers only s defective columns.

In case of almost disjunctive codes parameter ε can be treated as a probability of failure.

Results

Lower bound

$$
\begin{gathered}
C(s) \geq \underline{C}(s) \triangleq \max _{0<Q<1} C(s, Q), \\
C(s, Q) \triangleq h(Q)-\left[1-(1-Q)^{s}\right] h\left(\frac{Q}{1-(1-Q)^{s}}\right), \\
h(a) \triangleq-a \log _{2} a-(1-a) \log _{2}(1-a) .
\end{gathered}
$$

Sketch of the Proof.

The proof is based on the random coding method over the ensemble of constant-weight binary codes.
$\boldsymbol{x}(i)$ is independent of $\boldsymbol{x}(j)$

We calculate the probability of bad subset as

$$
\sum_{k} \operatorname{Pr}\left\{x(S) \text { is } s \text {-bad in } X /\left|\bigvee_{i \in \mathcal{S}} x(i)\right|=k\right\} \mathcal{P}^{(N)}(s, Q, k)
$$

where we applied the total probability formula and introduced the notation

$$
\mathcal{P}^{(N)}(s, Q, k) \triangleq \operatorname{Pr}\left\{\left|\bigvee_{i \in \mathcal{S}} \boldsymbol{x}(i)\right|=k\right\} .
$$

Further we bound $\operatorname{Pr}\left\{\boldsymbol{x}(S)\right.$ is s-bad in $\left.X /\left|\bigvee_{i \in \mathcal{S}} \boldsymbol{x}(i)\right|=k\right\}$ by $\min \left\{1 ;(t-s) \frac{\binom{k}{\left.Q_{N} N\right)}}{\left(\begin{array}{l}N N J\end{array}\right)}\right\}$ and proceed to the optimization problem.

Asymptotics

$$
\underline{C}(s)=\frac{\ln 2}{s}(1+o(1)), \text { at } Q(s)=\frac{\ln 2}{s}(1+o(1)) .
$$

Comparison with Disjunctive Codes

The rate of disjunctive codes

$$
\frac{4 \log _{2} s}{e^{2} s^{2}}(1+o(1)) \leq R_{0}(s) \leq \frac{2 \log _{2} s}{s^{2}}(1+o(1)) .
$$

The capacity of almost disjunctive codes

$$
\frac{\ln 2}{s}(1+o(1)) \leq C(s) \leq \frac{1}{s} .
$$

s	2	3	4	5	6
$\underline{C}(s)$	0.3832	0.2455	0.1810	0.1434	0.1188
$\underline{R}_{0}(s)$	0.1825	0.0787	0.0439	0.0279	0.0194
$\underline{R}_{0}^{\prime}(s)$	0.1281	0.0821	0.0566	0.0420	0.0325

Bound $\underline{R}_{0}(s)$ is taken from paper [1989, D'yachkov A.G., Rykov V.V., Rashad A.M.].

Bound $\underline{R}_{0}^{\prime}(s)$ is taken from paper [2013, D'yachkov A.G., Vorobyev I.V., Polyanskii N.A., Shchukin V.Yu.].

Constructions

(1) Construction based on shortened Reed-Solomon codes for classical disjunctive code.[2000, D'yachkov A.G., Macula A.J., Rykov V.V.]
(© MDS codes [2013, Bassalygo, Rykov].
Let $t=2^{\frac{q}{\log _{2} q}}, \quad N=q(q+1), \quad s=\sigma q$, where q - prime power, σ - some positive constant. If $\sigma<\ln 2$ then $\varepsilon(q) \rightarrow 0$ exponentially and rate $R=\frac{\log _{2} t}{N} \rightarrow \frac{\sigma}{s}$.

Bibliography

[1] D'yachkov A.G., Vorobyev I.V., Polyanskii N.A., Shchukin V.Yu., "Bounds on the Rate of Disjunctive Codes"// 2014 IEEE International Symposium on Information Theory, Honolulu, USA, July 2014.
[2] Dyachkov A.G., Vorobyev I.V., Polyanskii N.A., Shchukin V.Yu., "Almost Disjunctive List-Decoding Codes"// arXiv:1407.2482 [cs.IT], 2014.
[3] D'yachkov A.G., Vorobyev I.V., Polyanskii N.A., Shchukin V.Yu., "Bounds on the Rate of Disjunctive Codes"// Problems of Information Transmission, vol. 50, no. 1, pp. 27-56, 2014.
[4] D'yachkov A.G., Rykov V.V., Rashad A.M., "Superimposed Distance Codes"// Probl. Control Inform. Theory. 1989. V. 18. no 4. P 237-250.
[5] D'yachkov A.G., Macula A.J., Rykov V.V. New Constructions of Superimposed Codes. // IEEE Trans. Inform. Theory. 2000. V.46. n 1. P. 284-290.
[6] Bassalygo L. A., Rykov V. V., "Multiple-access hyperchannel" // Problems of Information Transmission, vol. 49, no. 4, pp. 299-307, 2013.

Thank you for your attention!

